
1

Table of Contents
Abstract 3

Introduction 3

Design goals for converged Indexing: 4

Indexing Technique 4

History 4

Search vs Converged Indexing 4

Architecture 5

Decoupling Compute & Storage 5

Separation of durability and performance 5

Ingesting Data 6

Click and Connect Data Integrations 6

Indexing at high write rates 6

Data latency at massive write rates 7

Queries 7

Routing 7

SQL joins and aggregations 7

Support for visualization tools 8

DATA API & Developer Tooling 8

Scaling to massive datasets 8

Scaling to a variety of applications 9

Serverless operations 9

Summary 9

About Rockset 10

Built For Speed at Scale 11

2

Abstract
Converged Indexing™ enables faster time to market and up to 50% lower TCO as compared to
Elasticsearch’s search indexing, for real-time analytics use cases. This is achieved by optimizing for
hardware and developer efficiency in the cloud.

Introduction
Both Elasticsearch and Rockset are queryable data stores that can store data and serve queries. Both
of them index data and use the index to serve queries. Both systems are document-sharded, which
means that documents are routed to a shard based on the document id. But that is where their
similarities end. This paper compares some of the technical differences between Elasticsearch’s search
indexing and Rockset’s Converged Indexing

● Elasticsearch uses search indexing, and is optimized for text search and log analytics use cases

● Rockset uses Converged Indexing, and is optimized for real-time analytics and real-time
applications

For real-time analytics use cases, data indexed includes event streams, user behavior data, sensor
data, device metrics, database change data capture from OLTP database and third-party data from
data lakes. Once indexed, it is primarily used for serving real-time analytics and real-time applications.

Real-time Analytics

● Ad optimization

● A/B testing

● Fraud detection

● Real-time 360

Real-time Applications

● Logistics or fleet tracking

● Gaming leaderboards

● Personalization

● Real-time recommendations

3

Design goals for converged Indexing:

Better scaling: Achieve low latency queries even with high velocity ingest and massive data volume,
by enabling efficient compute & storage scaling in the cloud

More flexibility: Enable fast search, aggregations and JOINs across semi-structured data formats.
Avoid denormalization, since real-time data comes in different shapes from different sources, and the
types of queries are not always known ahead of time.

Low ops: Optimize for ops efficiency in cloud environments by avoiding manual management of
indexes, shards, clusters or node types.

Indexing Technique

History

Elastic uses open source Apache Lucene as a storage engine. Lucene started in 1999 as a text-search
library on spinning disks. On the other hand, Rockset uses open source RocksDB as its storage engine.
RocksDB started in 2012 as an SSD based embedded key-value store used by Facebook and LinkedIn to
index massive datasets.

Search vs Converged Indexing

Elasticsearch builds an inverted index and a range index on your data. This means that filter queries
and range queries are served optimally. If you enable doc_values, then you have configured Elastic to
behave like a document index where you can find all the fields of a record efficiently. The doc_value
configuration is similar to a record store (like Postgres or MongoDB) and allows you to do aggregations
on a specific column. These aggregations are not as efficient as it could be in a true columnar storage
system (like a data warehouse).

On the other hand, Rockset builds a Converged Index on your data, the Converged Index includes an
inverted index and range index just like Elasticsearch, but also includes a columnar store (like a data
warehouse) and a record store (like Postgres). Rockset stores all values of a single column co-located in
the columnar store and Rockset queries serve low selectivity queries (e.g average, standard deviation,
min, max) using this columnar store. Since the values of a column are packed together, Rockset can
employ vectorization techniques to process large vector of column values very quickly.

4

https://www.elastic.co/guide/en/elasticsearch/reference/current/range.html

Architecture

Decoupling Compute & Storage

Elasticsearch was created in 2010 when the cloud was nascent. It was optimized for the datacenter and
does not decouple compute from storage. It has DataNodes that store the index as well as serves
queries on the index. The data size and the query performance are closely tied together, and the ratio
of compute to storage size is fixed for your hardware. If you need to change this ratio for other
use-cases or for managing price-performance for hot-warm-cold data, you have to manually migrate
your cluster to run on a different hardware instances.

Rockset, on the other hand, is cloud-native and decouples compute and storage:

● Data is served from hot storage, and automatically backed up on durable cloud storage.

● Compute resources are scaled independently as required.

● The compute resources are used for ingesting data or querying data from hot storage. Scaling
compute resources results in instant performance gains.

For every independent workload, you can spin up fully isolated compute resources in the form of
Rockset Virtual Instance.This gives your developers flexibility and agility to serve a variety of
workloads. Scaling storage independently from compute allows developers to seamlessly control their
price-performance over the lifecycle of the dataset, simply by adjusting the compute allocation over
time. This type of hardware efficiency, combined with serverless operations results in efficiency up to
50% lower Total Cost of Ownership (TCO) when using Rockset versus Elasticsearch for real-time
analytics.

Separation of durability and performance

Elasticsearch adopts a shared-nothing storage architecture where data durability is guaranteed via
replication among data nodes. This architecture was common in the pre-cloud days of 2010 when data
stacks were mostly deployed on-premises. Depending on the failure rate of your hardware, you would
typically configure two or three replicas of your index. Even if an index is not being queried
aggressively, you still need to keep these replicas for durability of your data. You have to manually
configure the resiliency of new writes.

Rockset is built for the cloud, and it leverages the cloud’s shared-storage model. All data is made
durable by storing it in cloud storage (S3, GCS, etc). Replicas are made only if the query or update
volume of an index increases. The Rockset system can serve data with just keeping a single replica in
SSD based systems, because the other durable copy resides in cloud storage.

5

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-index_.html#index-wait-for-active-shards

Ingesting Data

Click and Connect Data Integrations

If you have to continuously sync data from an external data source to Elastic, you have to deploy
Elastic Beats agents or use LogStash. The configurations for these connectors need to be deployed,
monitored, upgraded and maintained. For example, if you have to sync a dataset from S3 (in parquet
format), another dataset from Kafka (in avro-json format) and yet another dataset from MongoDB (via
change-streams) into Elastic, you need a plethora of configurations and manual configurations.

On the other hand, Rockset uses a Click-and-Connect architecture to synchronize data from external
sources into the Rockset index. The Rockset service has a set of Ingesters that continuously monitors
each of the configured sources and as soon as new data becomes available at the source, it pulls the
data into its Index. This provides you with hands-free operations, because you do not have to babysit
and shepherd hundreds of Beats and LogStash configurations for each of your data formats and data
sources.

Indexing at high write rates

Elasticsearch uses a primary-backup model for replication. The primary replica processes an incoming
write operation and then forwards the operation to its replicas. Each replica receives this operation
and re-indexes the data locally again. This means that every replica independently spends costly
compute resources to re-index the same document over and over again. If there are n replicas, Elastic
would spend n times the cpu to index the same document.

Rockset is a primary-less system. New writes are written to a distributed durable log and all replicas
tail that log and apply the operation locally to make the data visible to queries. Only one replica does
the indexing and compaction using RocksDB’s remote compaction and the other replicas fetch and
swap newly generated files from cloud storage. Thus, Rockset spends only 1x the cpu for indexing even
when there are multiple replicas in the system. Rockset employees a cloud-native primitive called

6

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-replication.html
https://rockset.com/blog/remote-compactions-in-rocksdb-cloud/
https://rockset.com/blog/remote-compactions-in-rocksdb-cloud/
https://rockset.com/create/?utm_source=elasticsearch-versus-rockset-whitepaper&utm_medium=content&utm_campaign=elasticsearch&utm_content=cta-1

Remote Compaction offered by RocksDB, that allows it to disentangle compaction cpu from storage
nodes, thereby able to speed up indexing speeds even in the face of bursty writes.

Data latency at massive write rates

Data latency is the time duration between when you make an update to your data and when it is
visible to a query. Reducing this metric is critical for powering realtime applications. Elastic has a
configuration called the refresh interval, Elastic buffers incoming writes into a in-memory buffer and
every time a refresh interval expires, it creates a new on-disk segment and makes that data available
for queries. To support a higher write rate, you have to increase the refresh interval, which is turn
makes you suffer from higher data latency.

On the other hand, Rockset uses open source RocksDB’s Log Structured Merge tree to make writes
visible to queries as soon as it is written; it too uses a in-memory buffer to cache incoming writes into
RocksDB’s memtable, and a lockless protocol makes this memtable be visible to existing queries as
soon as it is written and even before it is written to storage. This is critical to reducing data latency that
is much needed for powering real-time applications.

Queries

Routing

Both Rockset and Elastic are document-sharded systems that are designed for low latency queries. A
document is routed to a shard based on its id. A query hits all the shards in the index, processes the
query in parallel and returns results.

SQL joins and aggregations

Elasticsearch does not support joins; one way to join two datasets in Elastic is to write the join code as
part of your application and Elastic advises that these types of queries are prohibitively expensive. Yet
another way is to do write-time de-normalization, but this has the limitation that you need to know
the types of queries before-hand so that you can de-normalize the appropriate fields at write time.
Elastic supports simple bucketization and counts/min/max using pipelined aggregations. But
aggregation queries that need to create large transient data sets (e.g. count distinct) are not
supported. The reason being that Elastic does not support distributed aggregations.

Rockset supports a full featured SQL language including joins. A multi level aggregator executes
Rockset’s join operator. Aggregators are distributed and the JOINs are executed in a parallel fashion
over multiple aggregators for both scalability and speed. This means that a single query can use the

7

https://rockset.com/blog/remote-compactions-in-rocksdb-cloud/
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html#_unset_or_increase_the_refresh_interval
https://www.cs.umb.edu/~poneil/lsmtree.pdf
https://github.com/facebook/rocksdb/wiki/MemTable
https://github.com/facebook/rocksdb/wiki/MemTable
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-index_.html#index-routing
https://www.elastic.co/guide/en/elasticsearch/reference/current/joining-queries.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/_approximate_aggregations.html

memory on a large set of aggregator machines to hold and process transient datasets. Combined with
the columnar store described in the above paragraph, this single feature enables your developers to be
agile because they do not have to worry about joining multiple large datasets as part of an application
query.

Support for visualization tools

Most enterprise BI platforms (like Tableau) need a JDBC/ODBC api to access data in a datastore. Elastic
supports Kibana for visualization but does not provide first-class support for many BI tools, so
connecting it to Tableau visualization tools is difficult and time consuming. Rockset supports a full
featured JDBC driver and all standard SQL visualization tools can access it seamlessly.

DATA API & Developer Tooling

Both Elasticsearch and Rockset have extensive REST APIs which allow you to integrate, manage and
query the indexed data. Rockset has additional developer tooling such as support for Query Lambdas,
which are named parameterized SQL queries stored in Rockset that can be executed from a dedicated
REST endpoint. With Query Lambdas, you can version-control your queries in the form of data APIs so
that developers can collaborate easily with their data teams and iterate faster.

Scaling to massive datasets

An Elastic index is organized in the form of a set of shards. The number of shards determines the
maximum number of nodes on which the dataset can be hosted. When an index is growing in size and
you have already spread out all your shards on different machines, your queries become slower and
slower and your only option is to create a new index with a larger number of shards and then reindex
all the data from the existing index into the new index. This reindexing process is very costly in terms of
resource consumption. The amount of cpu and IO needed to reindex tens and hundreds of terabytes at
a regular periodic basis is very high.

On the other hand, every Rockset index is designed to scale up to hundreds of terabytes without
needing to ever reindex a dataset. A Rockset index is organized in the form of thousands of
micro-shards, and a set of micro-shards combine together to form appropriate number of shards
based on the number of available servers and the total size of the index. If the dataset increases in size,
a subset of micro-shards are peeled away from every existing shard and made into additional
independent shards and these additional shards are distributed to the new machines in your cluster.
No reindexing is needed and this feature is super-critical to support cloud-scale datasets.

8

Scaling to a variety of applications

Elastic is primarily built for log processing where the primary workload is to add new documents that
rarely update existing documents. Elastic do support updates of documents but if you want to update
one field of a document, Elastic will internally read all the fields of the existing document, apply the
update to that field and delete the original document and rewrite the entire new document to the data
store. Reindexing an entire document on Elastic consumes cpu resources.

Rockset, on the other hand, is optimized for mutating a single field without having to reindex the
entire document. Rockset’s Converged Indexing stores every individual field of the document into an
independently addressable key in the open source RocksDB database, which means that when a field
need to be updated, Rockset can update that single key without having to reindex the entire
document. Elastic’s update-an-entire-document implementation is suitable for logging events when
updates are rare. On the other hand, Rockset is built for powering real-time applications where your
application need to tag and update individual pieces of your dataset at different points in time, and its
field level mutability becomes super handy for scaling to a variety of real-time applications.

Serverless operations

Elasticsearch requires deep expertise for controlling costs at scale. It requires configuring clusters with
different node types, pre-configuring the number of shards in an index, tuning the amount of CPU per
node, configuring thread-pools, and moving indexes between hot-warm-cold nodes to manage the
index lifecycle as data ages. On the other hand, Rockset’s cloud-native serverless architecture is
optimized for hands-free operations, while providing visibility and control. It independently scales
compute & storage resources, and automates management of clusters, shards, indexes and data
retention based on policies set by the user.

Summary
Rockset’s Converged Indexing enables faster time to market and up to 50% lower TCO compared to
Elasticsearch’s search indexing, for real-time analytics use cases. This is achieved by optimizing for
hardware and developer efficiency in the cloud.

● Better scaling: Low latency queries even with high velocity ingest and massive data volume.
Decoupled compute and storage for better price-performance as ingest, queries and data
volume scale

9

● More flexibility: Standard SQL including JOINs on semi-structured data. No need to
denormalize data, allowing for any types of queries down the road so teams can deliver on any
future roadmap requirements. Data APIs for developer-friendly real-time analytics

● Low ops: Serverless auto-scaling in the cloud. No indexes, shards, clusters or node types to
manage.

References:

https://tech.ebayinc.com/engineering/elasticsearch-performance-tuning-practice-at-ebay/

https://logz.io/blog/the-top-5-elasticsearch-mistakes-how-to-avoid-them/

About Rockset
Rockset is a real-time indexing database service for serving low latency, high concurrency analytical
queries at scale. It builds Converged Indexes™ on structured and semi-structured data from OLTP
databases, streams and lakes in real-time and exposes a RESTful SQL interface. It is used for serving
real-time analytics and real-time applications.

Learn more at rockset.com

Connect with us at hello@rockset.com

10

https://tech.ebayinc.com/engineering/elasticsearch-performance-tuning-practice-at-ebay/
https://logz.io/blog/the-top-5-elasticsearch-mistakes-how-to-avoid-them/
http://rockset.com
mailto:hello@rockset.com

11

https://rockset.com/demo-signup/?utm_source=elasticsearch-versus-rockset-whitepaper&utm_medium=content&utm_campaign=elasticsearch&utm_content=cta-2
https://rockset.com/create/?utm_source=elasticsearch-versus-rockset-whitepaper&utm_medium=content&utm_campaign=elasticsearch&utm_content=cta-2
https://rockset.com/elasticsearch-talk/?utm_source=elasticsearch-versus-rockset-whitepaper&utm_medium=content&utm_campaign=elasticsearch&utm_content=cta-2
https://rockset.com/roi-real-time-analytics.pdf?utm_source=elasticsearch-versus-rockset-whitepaper&utm_medium=content&utm_campaign=elasticsearch&utm_content=cta-2

